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Thermodynamics and fractional Fokker-Planck equations
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The relaxation to equilibrium in many systems that show strange kinetics is described by fractional Fokker-
Planck equation$FFPES$. These can be considered as phenomenological equations of linear nonequilibrium
theory. We show that the FFPEs describe a system whose noise in equilibrium fulfills the Nyquist theorem.
Moreover, we show that for subdiffusive dynamics, the solutions of the corresponding FFPEs are probability
densities for all cases in which the solutions of the normal Fokker-Planck equatitmthe same Fokker-
Planck operator and with the same initial and boundary condijtierst. The solutions of the FFPEs for
superdiffusive dynamics are not always probability densities. This fact means only that the corresponding
kinetic coefficients are incompatible with each other and with the initial conditions.
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I. INTRODUCTION vy<1 correspond to subdiffusive behavior; and the case
>1 corresponds to a superdiffusive dynamics, such as the
Different physical systems, such as polymers chainspne considered in Ref6].
membranes, networks, and other generalized Gaussian struc-Other forms of FFPEs are known, e.g., a Galilean-
tures, often show a long temporal memory due to the cominvariant form[5,7], which appears quite naturally when de-
plex hierarchical organization of the modes of their motion.scribing transport in a given velocity field, and forms with
On the other hand, the response of these systems to an edifferent fractional time derivatives in front of the first and
ternal perturbation stays linear for a wide range of paramsecond spatial derivatives, which may appear as dynamical
eters[1-4]. As was recently suggested, the response dynanequations in many other contexisconomics, biology, etg.
ics is well-described by dynamical equations introducingThey do not apply to cases of thermodynamical relaxation
fractional time derivatives instead of whole-number onesclose to equilibrium.
[1-3]. From the thermodynamical point of view, the systems We show that FFPEs that describe subdiffusive dynamics
do not show any peculiarities close to equilibrium in contactalways have thermodynamically sound solutions when the
with a classical heat bath. corresponding normal Fokker-Planck equation also has them.
The relaxation to equilibrium in such systems is thus de-Such solutions are subordinated to the solution of a normal
scribed by fractional Fokker-Planck equatiofiEFPES, Fokker-Planck equation with the same initial/lboundary con-
which follow as phenomenological linear-response equasitions. The situation with the superdiffusive dynamics is
tions. The corresponding equations are especially popular idifferent: here not all combinations of external potential, dif-
application to a slow(subdiffusive dynamics[5], and were fusion coefficient, and memory kernel give rise to physical
introducedad hoc much before the microscopic basis for solutions(positive probability densitigsas is the case, e.g.,

such equations was made clear. for a fractional generalization of diffusion with drift. We
We show that the typical FFPEs with the fractional de-discuss why this is so and exemplify this situation by pro-
rivative in front of the normal Fokker-Planck operator, cesses subordinated to the solutions of a generic transport
equation(related to a Liouville equation
a . i ,
s POGD=¢ D¢ T &f(x,t)P(x,t)ﬂLkBT—z P(x,t) |, Il. FFPE’'S AS A PHENOMENOLOGICAL
X LINEAR-RESPONSE THEORY

&Y

Let us first discuss the properties of FFPEs as phenom-
. enological equations being very similar to the normal, diffu-

ﬁltr)?iljrr]ne Snsl,}[le&?sssslglc?w\i/r?nal?r:efgrr (rjeesccr)lrﬁ?:nsci):]cneeatlrly €AUsive Fokker-Planck equatiotFPE. Within standard phe-
Y 9 P ’ bezyd nomenological linear nonequilibrium theory8,9], the

only they fulfill the Nyquist theorem, which connects linear- diffusion equation in a weak external fielde., a forward

response behavior with the noise spectrum at equ”ibriumFokker-Planck equatiorfollows as a consequence of local
. L 1y )
Here the fractional derivative operatrt1L is defined by conservation of probability,

1 ﬁftdt’W(x,t’) P

1 P i .
R (R Myrersee @ V) ©

ot
and a phenomenological linear-response assumption

The value ofy=1 corresponds to an identity transformation,
leading to the case of pure diffusive behavior; the cases with ji=x®itp—rCgradpP, (4)
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wherex®= 4 and\(®=D are the kinetic coefficientéhe 1
mobility and the diffusion coefficient, respectivelyThe G(k,w)= - FTPRY 2 5" (11
phenomenological interpretation of the second equation is lo+ @ (w)ikf+ 0 (w)k

that the current in our system can be caused by a weak e
ternal field(and follows Ohm’s law and by the concentra-
tion gradient(the first Fick’s law, and that both effects are
independent as long as deviations from equilibrium ar
small.

In general, the linear response can be retarded and th
follows the equation

)I(\iow we are interested in the power spectrum of the equilib-
rium (f=0) noise generated by our system. Let us consider
Jhe second moment d& in the frequency domainyl,(w)

= — (%1 0k?) G(K, )| - o=2P P (w)/ w?. Note thatx is the
épine integral of the instantaneous velocity, so that the power
spectrum of the velocitycurrenj is exactly

= (2)
(=0T () - oP{gradP(t)}. (9 Si()=2ReTe) 2

Note also that the noise at equilibrium fulfills the Nyquist
Here @, are typically causal integrals of convolution type: theorem[10], according to which

' ol =2ks T Re®D(w), 13
‘Pﬁ'){f(t)}:f oD (t—t")f(t")dt’, ©) S, (w)=2kg () (13

’ so that the operatord® and®(? are not independent:
where the lower integration limit, can be either finite or Red () =kaT Red@) (), 149

infinite, or combinations of such integrals with derivatives
overt. Here again we assume behaviors typical for the syswhich for ® operators of the fractional derivative type imply
tems close to equilibrium. Inserting E¢p) into Eq.(3), we  that®@=kTd®). All equations withd @ =kTd™) are
get a non-Markoviartinonlocal in timg Fokker-Planck equa- thermodynamically sound: they fulfill the generalized Ein-
tion of the form stein relation and describe the relaxation to a Boltzmann dis-
tribution [11], whose properties follow also from the micro-
scopic description of the corresponding generalized Gaussian
structureg4]. The equations with independeht?) andd ()
will typically lead to behavior at variance with predictions of
7) equilibrium thermodynamics.
Note that most of the systems for which the fractional
(here we restrict ourselves to a one-dimensional case dynamics was applied are “normal” although complex situ-
Evaluating the first momenM(t) of the distribution ations such as polymers, membranes, or fractal webs. In what
P(x,t) under the influence of a homogeneous fdtose get  follows, we discuss only the case that describes such systems
that the evolution of the response follows the equation close to thermal equilibrium, for which the generalizations of
FPEs such as Ed1l) can be considered as thermodynami-
9 - ) cally sound phenomenological laws. We also note that equa-
ZTM1=®, (8)  tions such as Eq1) can be derived within the framework of
the stochastic approa¢h2], where they apply to situations
S =1 close to thermal equilibrium. On the other hand, the equa-
from which it is clear that the operatab;™ is exactly the  {jong with differenttemporal operators are also widely used:
one describing the linear response of the syst_em, so that thg, example is a Galilean invariant FFPE of R@f]. This
inverse operator corresponds to the system’s impedance. eqyation appears quite naturally when describing transport in
_ Let us consider the noise produced by our system at equl; given velocity field, i.e., when our system is in contact with
librium. The fact that the system is equilibrated means that ity strongly nonequilibrium flow of fluida river instead of a
was created long ago, so thij——. Let us consider a paty. Other variants with different orders of fractional tem-
Green’s function of the equilibrium system, fulfilling the poral derivatives may appear as dynamical equations in

62

J ~ d ~
—P(x,t)=d® — o fDPXD +P EP(x,t)

ot

equation many other contextgeconomics, biology, etc.but would
) never apply to the case of thermodynamical relaxation in a
d - d - d system close to equilibrium, since they violate Ety). The
_ —_ @) (2) ’ . ; ’ . .
7O =— [&XfG(x,t) + &y aXzG(X’t)l situation with the systems whose dynamics shows linear re-

sponse but is described by the FFPEs of a type different from
+ 8(x) 8(1). (9)  the one considered above is similar to one that arises when
negative temperatures are considef&d]: the systems de-
The Fourier transform of the Green’s function in both thescribed by such dynamics can exist as isolated systems but

spatial and temporal domains is given by cannot be in equilibrium with any “normal” macroscopic
bath. Interacting with a heat bath, such systems will gain or
iwG=[DPV(w)ikf+ PP (w)k?]G+1, (100  lose energy until they leave the linear-response regime and
get a noise spectrum conformal with equilibriiemd with a
having a solution Boltzmann energy distribution
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Note that FFPEs such as E{J) were proposed for pro- P P 52
cesses with finite incrementike continuous-time random- —F(X,t)=—u—F(X)F(x,t) + kgT—F(x,t). (17)
walk processesor ones with continuous trajectorig¢gac- at ax Ix*
tional Brownian motioh situations for which the
assumption of the localdifferentia) conservation law is To check this, let us take the Laplace transform of both sides
proved. The related thermodynamical considerations showf Eq. (1), and note that this transform acts only on the
that a system whose noise does not possess any second m@riable, which appears in Eq15) as a parameter: The

ment(Lévy noise does not fulfill local conservation, E¢B), Laplace transform in of Eq. (15) reads
and can hardly exhibit linear response, a fact found in Ref.

[14] with an example of subordinated processes. This case is -
addressed in Ref15] and leads to a different form of FFPEs  pP(x,u)= J F(x,7)u?" texp — ru”)dr= uv—lﬁ(x,m)_
with fractional spatial operators. 0

Considerations based on linear nonequilibrium thermody- (18)
namics are somewhat too general, since Egs.and (5)
guarantee the overall conservation of the vatigut not the  The fractional temporal differentiation leads to
fact that thisP is a non-negative quantity. The same equa-
tions will apply for electric charge and currefthich can be ~ 9 ~
of both signs and may oscillgtand for density or tempera- u’F(x,u”)—P(x,+0)=—pu—f(X)F(x,u”)
ture, which are essentially non-negative. Thus, in order to X
check that the corresponding equation is thermodynamically 52
sound, one has to prove that if the initial condition corre- + ukgT—F(x,u?). (19
sponds to a non-negative densRyx,0), the densityP(x,t) ax?
will stay non-negative during all the following evolution.
Since we concentrate here on the properties of relaxation tQote that fort— 0, the T functions are strongly concentrated,
equilibrium, the force term and the diffusion coefficient in g5 thatT(7,t)— 8(7) and P(x,+0)=F(x,+0). Changing
our system will be considered time-independent. now to a new variablé.=u”, we recognize in Eq(19) the

The proof of the non-negativity of the solution for the | gpjace transform of the “normal” FPE with the same time-
force-free case was given [116] for the subdiffusive case. jndependent force and the same initial conditions. Thus, the
We show that the same is true for the arbitrary external forceggytion of the FFPE can be obtained from the solution of the
Namely, we shall show that all solutions of FFPEs with  Fpg by immediate integration. Moreover, each functional of
<1 in an arbitrary time-independent potential force field aresych a solutior(e.g., any momeitcan be immediately ob-
thermodynamically sound, and describe the transport of gined by weighing the corresponding functional of the FPE
positively defined density. Moreover, we show that superdifsojytion with a probability distribution, Eq(16), for which
fusive equations with £ y<2 do not always possess physi- yseful analytic representations are known. Thus, the equa-
cally sound solutions, unless some additional conditions argons with y<1 in any (temporally constantforce field f
fulfilled. Fokker-Planck equations of the type of K@) with  opey regular Boltzmann thermodynamics and correspond to
y>2 seem to contradict physical sense. However, the supethe transport of a positively defined density. Our result gen-
ballistic behavior(say, Levy flights) can be described by the grgjizes the mathematical treatment of Schneider and Wyss

FFPEs of a different class; see REI5]. and shows that the solution of a FFPE describing subdiffu-
sive transport in an external potential is a probability density

Ill. THE SUBDIFFUSIVE CASE: TEMPORAL whenever the solution of a normal FPE in the same potential
SUBORDINATION is one. The generalization to higher dimensions is evident.

Note that our discussion here parallels that of Réf7],
where the fractional Kramers equation is considered.

Note that Eq.(19) shows an extremely interesting prop-
erty of free relaxation of the systems described by subdiffu-
o sive FFPEs, namely the fact that the solution of 8¢ .hav-

P(x,t)=f F(x,7)T(7,t)dr, (150  ing a form of convolution(linear response with a long-time
0 memory kernel can be represented in the form of subordi-
nation, i.e., they correspond to the behavior of the system
whose development is governed by its own internal clock,
¢ which is not synchronized with our physical tif&8]. The
_ Uy  _ first reasonable use of this fact can be probably attributed to
T(7,0) ,y71+1/7£(t/7 =Y (16 Clark; see Ref[19] for the discussion of the role of subor-
dination in economical processes. Thiperationaltime is a
with £(z,,—y) being an extreméone-sidedl Lévy-stable variable that is Laplace-conjugatedud, and can be consid-
law of index y [5,17], whose pdf vanishes identically far  ered as a real time variable, since it is monotonously growing
<0, andF(x,7) is the solution of the “normal” FPE under in our physical time and allows us to order the events se-
the same force and the same initial conditions: guentially.

Let us first consider the subdiffusion case; §<1. Note
that the solution of thesubdiffusive FFPE under time-
independent force can be put in the following form:

where
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IV. SOME PROPERTIES OF TEMPORAL the subordination and the inverse transformation keep the
SUBORDINATION overall normalization of the possible probability density
functions(PDF9 as functions of coordinates.

. . ) I . The T~ functions are not PDFs of since they may take
nation transformatioiST); the term “time-expanding trans- . .
negative or even complex values. Let us fix some value of

formation” (TET) will be reserved for those witly<1. In and consider the limiting value of the integralr)
order to sharpen the instruments needed for understanding o d hich b q i f
the consequences of Eq.), let us discuss some properties of JoT(7,t)dt, which can be yexpresse in terms o
STs with T(,t) functions from the class discussed above.T(7.u): I(7)=lim,_o(u”"*e~™’). For y<1 the corre-
The physical timet will be called the outer variable of the Sponding integral diverges being positive. On the other hand,
function T(7,t), and the variabler (operational timgover ~ for y>1I(7)=0, which means that the functiofi(rt)
which the integration is performed will be called its inner €ither changes its sign or vanishes identically. The last is
variable. Note that the STs are just a type of transformatioot the case since the integrbd(7)=[otT(7,t)dt=—d/
typically arising in a context of separation of variablése ~ du(u” le” T“’)|UHO still diverges for & y<2 [for larger
eigenfunction decomposition with integration or summationvalues of y the integralsl ,(7) = [5t"T(7,t)dt with n>y

The integral transform, Eq15), will be called a subordi-

over the eigenfunctions numbered by the eigenvalueln —1 still divergd.
the eigenfunction decomposition, we start from the solution
of a time-independent equatidrero order in timgand rise V. THE SUPERDIEFUSIVE CASE

the order of temporal derivativesay to 3 by applying an
equation of the type of Eq15). In the case of subdiffusive Our derivation of the FFPE and its formal solution
FFPEs, we proceed in the opposite direction: we lower théhrough subordination are valid independent of the particular
order of a temporal derivative by applying subordination. Asvalue of y. The fact thatT (7,t) for y>1 is not non-
we proceed to show, a superposition of two functions of thenegative does not mean that the integral @) takes nega-
type of T(r,t) (with indicesy, andy,) discussed above is tive values: it solely means that the non-negativity of the
again a function of the same class with the indexy,v,.  physical solutions of FFPEs does not follow from the non-
Let us suppose that both indices and vy, are less than negativity of the physical solutions of the Fokker-Planck
unity. We know that the Laplace transform ®(r,t) in its ~ equation, and that the variabtecan no longer be interpreted
outer variable read$(r,u)=u”"lexp(—u?). We thus get  as an internal time governing the system’s evolution. On the
other hand, Eq918) and(19) are still valid as a representa-
1 f t/ ( t/ ) - tion of a formal solution of the FFPE. We shall regard such
u

T*(1,u)=— a formal solution as following from a pseudosubordination.
" In some special cases of pseudosubordination one can still
xexp(—t'u”2)dt’, (200  9uarantee that the corresponding solution is a probability dis-
tribution, as is the case, e.g., for force-free transportsfor
which is again a Laplace transform of Tafunction in its ~ <2; in other cases, the solutions are not PDFs as, e.g., for

—L
Tl+l/71 71 7-1/71

outer variable. Using this fact, once again we get v>2.
T*(r,u)= u72_1JmT1(T £exp — £ur2)dé A. Pure superdiffusion: Relation to a wave equation
0 Let us consider a purely diffusive situation without exter-
=u”27" Lexp — ru"2), (21)  hal force,
Thus, parallel to the vy case of Ref[14], the superposition E(x.t)= 1 B X_2 23
of two TETs is a TET again. Note that all functions with (x,0)= 2. /7Dt ex 4Dt/ (23

y<<1 are probability densities in their inner variable: they are
non-negative and integrable. On the other hand,Tifienc-  The Laplace transform of this function trvariable reads
tions rising the order of the temporal variable have a Laplace
transform in the outer variable, which reads F(x,u)=2u""2exp — x| Ju). (24)

T;(T,u)le,y(r,u)zul’“/*l exp(— ru'’), (22) Let us now use Eq(18) and getP(x,u) for arbitrary y:

i.e., it belongs to the same class of functions'&s but with P(x,u)=u”"1F(x,u”)=su"? Texp(—|x|u??). (25
y*=1/y>1. Note that the transform$, and T, =Ty, ) )

lowering and rising the order of the FFPE to the sam T.he functionP(x,u) belqngs to the class of functiofig 7,t)
amount, are the inverse of each other: the Laplace transfor@Ven by Eq.(16), but with a change of to y/2:

of T,T, is exp(-ur) so thatT, T, corr_esponds to &(7 P(x,t)=%T7,2(|x|,t). (26)
—1). Moreover, we have to note that thentegral of T(r,t),

N(t)=JoT(7t)dr being an inverse Laplace transform of Note that Eq(26) gives the representation of the superdiffu-
N(u)=fju? texp(—mudr=u?l, is equal to 1 both for sive propagators in terms of the \yefunctions, which sim-
TETs (y<1) and inverse >1) transforms, so that both plifies the general result of Ref6]. Since we know that
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T,(¢.1) is a positive function of both of its variables for (x— uft)?
>0 and y=<1, in the case of free propagatioR(x,t) is F(x,t)= [{——} (31
positive for all y<2. The casey=2 corresponding to 2ymDt 4Dt
P(x.0=48(x~) @7 ea%
) ) - . exp ufx/2D) (=1
describes a special case of ballistic propagation. The equa- F(x,u)= —f —
tions of indexy>2 (describing a process that figsterthan 2\/mD o\t
the ballistic on¢ do not correspond to transport of positive 242 X2
probabilities, since the functioris, with y>2 are no longer xex[{ —( +u|t— —t‘l}dt
non-negative. 4D 4D
We have seen that although the non-negativity of the so-
lution is not mathematically guaranteed by the FFPE with = exp2in) 1 exf — V(ZZ+u)r?], (32
y>1 itself, the equation still can possess physically reason- 2D J+u ’

able positive solutions describing superdiffusive transport.

Let us discuss now the reasons why this is so. Let us not@here the variables =x/2\D and{=uf/2\D ({>0) are
that the solutionP(x,u)=u""2exp(~|x\u) itself can be introduced(see 2.3.16.2 of Ref21]). Applying theT, trans-
considered as subordinated to a process described by Efgrmation to Eq.(32), we get

(27) [corresponding toW(x,u)= /7 exp(—|xu)] with a

g H H " H H 4 zgh) u

subdiffusive” subordination functiorrl ,5( 7,t), so that the P.(X.U)= exp( exd — (22+ uD)N2
whole process can be considered as a superposition of two 2(%.U) 2D JZ+u? H-le N
subordination transformations, leading to the overall behav- (33

ior with y* = y/2. The process subordinated té-dunctional )
form under operational time given By, (1) is, of course, L€t us show thaP,(x,u) is not a Laplace transform of a

exactly the solution given by Eq26) discussed before. probability distribution. Note that a Laplace transfofifu)
We note here that the twé pulses described by E¢R7) of any non-negative functiori(t) must be an absolutely
are a solution of a wave equation, monotone function, i.e.,€1)"(d"/du")f(u)=0 must hold
for all u andn. To prove this, it is easy to see that

PE I n

S T T - (28) d e —uty+_ Y —ut

a2 ox2 —f(u)=| f(t)e "dt=(—-1) t"f(t)e “'dt.

du" 0 0

The solution Eq(27) is not a Green’s-function solution of a (34)
wave equatioriknown to beG(x,t)=36(t—|x|) in one di-  On the other hand, the firstderivative ofP,(x,u) changes
mension, see Ref20]] but rather a solution corresponding its sign atu being a root of the equation

to a different initial condition, namel(x,t) — 8(x) 6’ (t).

The reason for this is easy to understand: The limiting equa- U2+ PPN —u?(u?+ %) =0. (35)
tion for the Green’s function of a FFPE with— 2 is not a

wave equation, but rather a first-order integro-differentialThe existence of positive roots of this equation for any

form, #0 is clear since for small the overall expressiofwhose
sign is the same as the sign af/@u)P,(x,u)] is positive,
9F t52F and for largeu it is negative. Note that the function becomes
—= | —dt'+8(x) (1), (29)  absolutely monotone only whef=0, i.e., only in the case
Jt 0 gx* of free diffusion. This observation is of extreme importance

since it shows that while the TET3 ( with y<<1), lowering
which is obtained from a wave equation by temporal integrathe order of the FFPE, always lead to reasonable physical
tion. solutions, the inverse transformations, raising the order of
the FFPE, do not always do so.
B. A problem of superdiffusion with drift Note that all the function® ,(x,t) obtained from diffu-
sion with drift under pseudosubordination are not probability
tributions for ally>1. The Laplace transform of the cor-
sponding functions reads

Let us now consider processes being pseudosubordinat
to diffusive motion under time-independent homogeneou§e
external force(i.e., the solutions of FFPEs

Cexp2on) urt

P,(x,u)= ) mexp{—

7 el uilp 0 p
E_O e & (X,t)+ E (X,t)

V(E2+HUu”)N?].

(36)

(30

with @=1—y<0). The Laplace transform of the corre- The first derivative ofP (x,u) changes its sign at being a
sponding Green'’s function of the FPE, positive root of
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[(y=2)u"+(2y—2) PIN(U+ )N = yu?(u”+ %) =0, Pp 99 sor oo Lls g
(37 o > 7t p)—&( p) x| Kax p)
which function is positive for small and negative for larger J P
ones. Thus, the solutions of the FFPE of the type of a =— —(Xp)+ —(X?%p), (41)
Fokker-Planck equation with>1 under homogeneous, con- IxX ax?

stant force are not probability distributions. Similar conclu-
sions were drawn when considering the particle’s motion in a

harmonic potential22].

VI. SUPERDIFFUSIVE CASE: SUBORDINATION
TO A GENERIC TRANSPORT EQUATION

which is, of course, identical to the Liouville one. The GTE
follows after the ensemble averaging, under which the cor-
responding conditional means appear instead of the instanta-
neous velocity and acceleration, so that Etl) reduces to

Eq. (38). Note that the GTE can be useless but is never false:

In Sec. VA, we have seen that the solutions of a diffusionits solutions describe all possible motions and are both dy-

equation(representing a behavior of a stochastic procass

namically and thermodynamically sound. These solutions are

subordinated to deterministic dynamics, described by & qnhapility densities. On the other hand, the prefactoemd

simple propagation of pulses with constant velocity and

given by a wave equation. Is the wave equatioe., the
superdiffusive FFPE withy=2 for a force-free situatiorf

=0) a very special case, or are there some forms wWith

#0 that still lead to reasonable solutions?

It is clear that the second-order partial differential equa
tion to whose solutions the solution of FFPEs could be sub-

ordinated would read

J9°P d 92

— =~ x[API+ —5[BOP]. (38

B arise as(nonequilibrium ensemble averages and depend
on what ensemble is used and thus on the initial conditions:
a simple example of this fact is considered below. The ab-
sence of the physical solution of E¢38) means that the

corresponding thermodynamical forces and kinetic coeffi-

cients definingA(x) and B(x) are incompatible with each
other or with the initial conditions and would never appear as
thermodynamical means. Moreover, even if the system as a
whole is homogeneous and its physical properties are time-
independent, the coefficientqx,t) andB(x,t) can be time-
dependent and will relax to the equilibrium values no faster
than the distribution itself relaxes to its equilibrium form,

Equation(38) includes the wave equation as a special casewhich explains the unphysical sort-time behavior of the so-
Equation(38) will be called the generic transport equation lutions of superdiffusive FFPE in the harmonic potential
(GTE), and, parallel to a wave equation, has a dynamicafound in Ref.[22].

(deterministi¢ nature. This equatiofbeing a close relative As an example of a process subordinated to a solution of
of Liouville equation) was considered by the author in a the GTE, let us consider a simple oscillatory process taking
different context in Ref[23]: The GTE appears when restor- place in the operational time of the system. The dynamic
ing temporal dependence in a Pope-Ching equation for staequation of the oscillator is

tionary random processes, RE24]. The meaning of prefac-
tors here isA(x) =(x(x)) andB(x)=(x*(x)), so that for a
physical particle they are proportional to the acting force and
to the particle’s mean kinetic energy.

Let us remember the procedure of derivation of the GTE
given in Ref.[23]. The PDF ofx, p.(X), is obtained as an Let us consider the situation in which the oscillator starts
ensemble averagée.g., over the initial conditionsof the  with zero velocity atx=—a so that A(x)=—w?x and
realizations for each of which B(x) = w?(a®>—x?). Our process is described in operational

time by a GTE,

(42

p(x,t) = &(X(t) —x), (39

whereX(t) represents the law of motion. The coarse-grained PF 9 5 9? s 2 o
probability is then given by(x)=(p(x,t)). Differentiating P =@ xF)+ ﬁ[w (@®=x9)F] (43)
Eq. (39) with respect to time, one gets
P %P k) (40 With the initial conditions F(x,0)=d(x+a) and
dt X IxX [9F(x,7)/d7]| ,—0=0, whose solution, as anticipated, reads

F(x,7) = 8(x+acosw7). Note that the coefficier depends
sinceX is independent ok. Note that Eq(40) is a Liouville  explicitly on a, so that the form of the equation depends on
equation, and the derivation here is parallel to the one givethe initial energy of the oscillator. Equatigd3) is incom-
in Ref. [25]. Applying the same procedure for the secondpatible with any combination of initial conditions not leading
time, we get to the same amplitude of oscillations, i.e., whenever one
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supposesv?x2(0)+x2(0)+ a2, and would lead in this case It is important to stress that the fact that the solutions of
to negative or complex PDFs. The solution subordinated tguperdiffusive FFPEs in general are not probability densities
F(x,7) reads does not devaluate the FFPEs as an instrument for descrip-

tion of complex relaxation phenomena, but shows that many

o combinations of thermodynamical forces, kinetic coeffi-

P(x,u)= fo S(x+acoswr)u”” texp(—ru”)dr cients, and memory functions will never appear as thermo-
dynamic ensemble means. This means that the forces and

ur-1 p{l % X kinetic coefficients cannot be invented ad hoc, but must fol-

=~ ———6EXg —arccos - — low either from experiments or from microscopic consider-
wayl-x*/a’ @ a ations. In the casepwhen the correct thermodyrriamical forces

) and the impedance of the system are known, its FFPE is

u?”

uniquely determined.

The consideration of the GTE explains also our finding
that the solutions for the force-free transport witk-2 are
not non-negative. Such equations would describe processes
= . (44)  subordinated to the solutions of the exact third-order trans-

way1—x?%a? 1—exp< _ Euy) port equation. The exact equation with=3 arising from

@ applying a Liouville operatow/dt+x(d/dt) to the PDFP

three times is a trinomial construct, with correlated coeffi-
cients in front of the first, the second, and the third spatial
derivatives. This third-order equation is a generic form for
transport equations of higher order. The equations subordi-
nated to this one will have third-order structure in spatial
variables and will hardly be a helpful tool, since they do not
1 have any known classical counterpart whose solutions may

1
P(x,u—0)= m m. (45  be used for building new ones.

Fort— o« (full dephasing, the corresponding PDF tends to a
PDF to find an oscillating point at coordinake Thus, for
u—0,

which corresponds to VIl. CONCLUSIONS

Fractional Fokker-Planck equatiol&FPB with addi-

tional fractional time derivative in front of a normal Fokker-

1 Planck operator appear within a usual linear-response theory
: (46) o i o=

mray1—x?/a? when describing systems showing strange kinetics. We show
that such a form of FFPEs describes systems in contact with
) ) ) ~a heat bath, since the noise in such systems in equilibrium

a well-known solution for the invariant PDF for a classical (for t— ) fulfills the Nyquist theorem. Many other forms

harmonic oscillator. Thus, the equations su‘bord.inated. Qe.g., with temporal fractional derivatives of different orders
GTE may describe partly coherent phenomena: their physica), ot of first- and second-order spatial derivativaee thus

relation to a wave equation becomes evident. It is interestinguled out as appropriate for describing situations close to

to mention that the Fokker-Planck equation with the Sameequilibrium, although they may be appropriate for many

coefficients as Eq(43) describes a harmonic oscillator in ! .
; e ) . other transport processes, such as, e.g., dispersion by flows.
which the diffusion takes place in an inhomogeneous tem-

perature fieldT(x)=I—x&aZ, and such a diffusive solu- Using the fact that the solutions of subdiffusive FFPEs with

tion stays physically sound both under subordination and urime-independent coefficients are subordinated to those of

der pseudosubordination up §o=2 normal Fokker-Planck equations, we show that the FFPE so-

The discussion above shows that for Aflx) and B(x) lutions are probability_ densities in QII cases _When the usual
and initial conditions for which Eq(38) has real, non- Fokker-PIaqck equation has physical solutions. Thus, t_he
negative, normalizable solutions, the free relaxation of 4r€€ relaxation of a complex system under FFPE dynamics
complex system under FFPE dynamics can be described £8n be described as its development in its daperational
its deterministic development in its owfoperational time. ~ time. The superdiffusive FFPEs do not possess physical so-
The inverse(as we have proved with an example of a diffu- lutions for an arbitrary choice of force and diffusion coeffi-
sion with drift) is not the case. Our considerations leave oper¢ient. This does not devaluate the FFPEs as a tool for de-
the question of whether all physically sound solutions ofscription of superdiffusive processes, but stresses the fact
superdiffusive FFPEs are subordinated to those of GTE, or ifhat the corresponding combination of thermodynamical
this class is wider and includes some functions that are prolforces and memory functions can never emerge as a thermo-
ability densities for KX y<y* and cease to be probability dynamical ensemble average: the corresponding phenomeno-
densities fory* <y<2. logical equations have to be handled with care.

P(x,t—o0)=
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