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Thermodynamics and fractional Fokker-Planck equations

I. M. Sokolov
Theoretische Polymerphysik, Universita¨t Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg im Breisgau, Germany

~Received 16 January 2001; published 16 April 2001!

The relaxation to equilibrium in many systems that show strange kinetics is described by fractional Fokker-
Planck equations~FFPEs!. These can be considered as phenomenological equations of linear nonequilibrium
theory. We show that the FFPEs describe a system whose noise in equilibrium fulfills the Nyquist theorem.
Moreover, we show that for subdiffusive dynamics, the solutions of the corresponding FFPEs are probability
densities for all cases in which the solutions of the normal Fokker-Planck equation~with the same Fokker-
Planck operator and with the same initial and boundary conditions! exist. The solutions of the FFPEs for
superdiffusive dynamics are not always probability densities. This fact means only that the corresponding
kinetic coefficients are incompatible with each other and with the initial conditions.

DOI: 10.1103/PhysRevE.63.056111 PACS number~s!: 05.40.2a, 05.70.2a, 02.50.2r
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I. INTRODUCTION

Different physical systems, such as polymers cha
membranes, networks, and other generalized Gaussian s
tures, often show a long temporal memory due to the co
plex hierarchical organization of the modes of their motio
On the other hand, the response of these systems to a
ternal perturbation stays linear for a wide range of para
eters@1–4#. As was recently suggested, the response dyn
ics is well-described by dynamical equations introduc
fractional time derivatives instead of whole-number on
@1–3#. From the thermodynamical point of view, the syste
do not show any peculiarities close to equilibrium in cont
with a classical heat bath.

The relaxation to equilibrium in such systems is thus
scribed by fractional Fokker-Planck equations~FFPEs!,
which follow as phenomenological linear-response eq
tions. The corresponding equations are especially popula
application to a slow~subdiffusive! dynamics@5#, and were
introducedad hoc much before the microscopic basis f
such equations was made clear.

We show that the typical FFPEs with the fractional d
rivative in front of the normal Fokker-Planck operator,

]

]t
P~x,t !5 t0

Dt
12gmF ]

]x
f ~x,t !P~x,t !1kBT

]2

]x2
P~x,t !G ,

~1!

are the only possible variant for description of nearly eq
librium systems showing linear response, since they~and
only they! fulfill the Nyquist theorem, which connects linea
response behavior with the noise spectrum at equilibriu
Here the fractional derivative operatorDt

12g is defined by

t0
Dt

12gW5
1

G~a!

]

]tEt0

t dt8W~x,t8!

~ t2t8!12g
. ~2!

The value ofg51 corresponds to an identity transformatio
leading to the case of pure diffusive behavior; the cases w
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g,1 correspond to subdiffusive behavior; and the caseg
.1 corresponds to a superdiffusive dynamics, such as
one considered in Ref.@6#.

Other forms of FFPEs are known, e.g., a Galilea
invariant form@5,7#, which appears quite naturally when d
scribing transport in a given velocity field, and forms wi
different fractional time derivatives in front of the first an
second spatial derivatives, which may appear as dynam
equations in many other contexts~economics, biology, etc.!.
They do not apply to cases of thermodynamical relaxat
close to equilibrium.

We show that FFPEs that describe subdiffusive dynam
always have thermodynamically sound solutions when
corresponding normal Fokker-Planck equation also has th
Such solutions are subordinated to the solution of a nor
Fokker-Planck equation with the same initial/boundary co
ditions. The situation with the superdiffusive dynamics
different: here not all combinations of external potential, d
fusion coefficient, and memory kernel give rise to physic
solutions~positive probability densities!, as is the case, e.g
for a fractional generalization of diffusion with drift. We
discuss why this is so and exemplify this situation by p
cesses subordinated to the solutions of a generic trans
equation~related to a Liouville equation!.

II. FFPE’S AS A PHENOMENOLOGICAL
LINEAR-RESPONSE THEORY

Let us first discuss the properties of FFPEs as phen
enological equations being very similar to the normal, diff
sive Fokker-Planck equation~FPE!. Within standard phe-
nomenological linear nonequilibrium theory@8,9#, the
diffusion equation in a weak external field~i.e., a forward
Fokker-Planck equation! follows as a consequence of loc
conservation of probability,

]P

]t
52div j , ~3!

and a phenomenological linear-response assumption

j5l (1)fP2l (2)gradP, ~4!
©2001 The American Physical Society11-1
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wherel (1)5m andl (2)5D are the kinetic coefficients~the
mobility and the diffusion coefficient, respectively!. The
phenomenological interpretation of the second equation
that the current in our system can be caused by a weak
ternal field~and follows Ohm’s law! and by the concentra
tion gradient~the first Fick’s law!, and that both effects ar
independent as long as deviations from equilibrium
small.

In general, the linear response can be retarded and
follows the equation

j ~ t !5F t
(1)$f~ t8!P~ t8!%2F t

(2)$gradP~ t8!%. ~5!

HereF t are typically causal integrals of convolution type

F t
( i )$ f ~ t !%5E

t0

t

w ( i )~ t2t8! f ~ t8!dt8, ~6!

where the lower integration limitt0 can be either finite or
infinite, or combinations of such integrals with derivativ
over t. Here again we assume behaviors typical for the s
tems close to equilibrium. Inserting Eq.~5! into Eq. ~3!, we
get a non-Markovian~nonlocal in time! Fokker-Planck equa
tion of the form

]

]t
P~x,t !5F̂ t

(1)F2
]

]x
f ~x,t !P~x,t !G1F̂ t

(2)F ]2

]x2
P~x,t !G

~7!

~here we restrict ourselves to a one-dimensional case!.
Evaluating the first momentM1(t) of the distribution

P(x,t) under the influence of a homogeneous forcef, we get
that the evolution of the response follows the equation

v̄5
]

]t
M15F̂ t

(1)f , ~8!

from which it is clear that the operatorF̂ t
(1) is exactly the

one describing the linear response of the system, so tha
inverse operator corresponds to the system’s impedance

Let us consider the noise produced by our system at e
librium. The fact that the system is equilibrated means tha
was created long ago, so thatt0→2`. Let us consider a
Green’s function of the equilibrium system, fulfilling th
equation

]

]t
G~x,t !52F̂ t

(1)F ]

]x
f G~x,t !G1F̂ t

(2)F ]2

]x2
G~x,t !G

1d~x!d~ t !. ~9!

The Fourier transform of the Green’s function in both t
spatial and temporal domains is given by

ivG5@F (1)~v!ik f 1F (2)~v!k2#G11, ~10!

having a solution
05611
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G~k,v!5
1

iv1F (1)~v!ik f 1F (2)~v!k2
. ~11!

Now we are interested in the power spectrum of the equi
rium ( f 50) noise generated by our system. Let us consi
the second moment ofG in the frequency domain,M2(v)
52(]2/]k2)G(k,v)uk5052F (2)(v)/v2. Note thatx is the
time integral of the instantaneous velocity, so that the pow
spectrum of the velocity~current! is exactly

Sv~v!52 ReF (2)~v!. ~12!

Note also that the noise at equilibrium fulfills the Nyqui
theorem@10#, according to which

Sv~v!52kBT ReF (1)~v!, ~13!

so that the operatorsF (1) andF (2) are not independent:

ReF (1)~v!5kBT ReF (2)~v!, ~14!

which for F operators of the fractional derivative type imp
that F (2)5kBTF (1). All equations withF (2)5kBTF (1) are
thermodynamically sound: they fulfill the generalized Ei
stein relation and describe the relaxation to a Boltzmann
tribution @11#, whose properties follow also from the micro
scopic description of the corresponding generalized Gaus
structures@4#. The equations with independentF (1) andF (2)

will typically lead to behavior at variance with predictions
equilibrium thermodynamics.

Note that most of the systems for which the fraction
dynamics was applied are ‘‘normal’’ although complex sit
ations such as polymers, membranes, or fractal webs. In w
follows, we discuss only the case that describes such sys
close to thermal equilibrium, for which the generalizations
FPEs such as Eq.~1! can be considered as thermodynam
cally sound phenomenological laws. We also note that eq
tions such as Eq.~1! can be derived within the framework o
the stochastic approach@12#, where they apply to situation
close to thermal equilibrium. On the other hand, the eq
tions with different temporal operators are also widely use
an example is a Galilean invariant FFPE of Ref.@7#. This
equation appears quite naturally when describing transpo
a given velocity field, i.e., when our system is in contact w
a strongly nonequilibrium flow of fluid~a river instead of a
bath!. Other variants with different orders of fractional tem
poral derivatives may appear as dynamical equations
many other contexts~economics, biology, etc.! but would
never apply to the case of thermodynamical relaxation i
system close to equilibrium, since they violate Eq.~14!. The
situation with the systems whose dynamics shows linear
sponse but is described by the FFPEs of a type different f
the one considered above is similar to one that arises w
negative temperatures are considered@13#: the systems de-
scribed by such dynamics can exist as isolated systems
cannot be in equilibrium with any ‘‘normal’’ macroscopi
bath. Interacting with a heat bath, such systems will gain
lose energy until they leave the linear-response regime
get a noise spectrum conformal with equilibrium~and with a
Boltzmann energy distribution!.
1-2
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Note that FFPEs such as Eq.~1! were proposed for pro
cesses with finite increments~like continuous-time random
walk processes! or ones with continuous trajectories~frac-
tional Brownian motion!, situations for which the
assumption of the local~differential! conservation law is
proved. The related thermodynamical considerations sh
that a system whose noise does not possess any secon
ment~Lévy noise! does not fulfill local conservation, Eq.~3!,
and can hardly exhibit linear response, a fact found in R
@14# with an example of subordinated processes. This cas
addressed in Ref.@15# and leads to a different form of FFPE
with fractionalspatial operators.

Considerations based on linear nonequilibrium thermo
namics are somewhat too general, since Eqs.~3! and ~5!
guarantee the overall conservation of the valueP but not the
fact that thisP is a non-negative quantity. The same equ
tions will apply for electric charge and current~which can be
of both signs and may oscillate! and for density or tempera
ture, which are essentially non-negative. Thus, in order
check that the corresponding equation is thermodynamic
sound, one has to prove that if the initial condition cor
sponds to a non-negative densityP(x,0), the densityP(x,t)
will stay non-negative during all the following evolution
Since we concentrate here on the properties of relaxatio
equilibrium, the force term and the diffusion coefficient
our system will be considered time-independent.

The proof of the non-negativity of the solution for th
force-free case was given in@16# for the subdiffusive case
We show that the same is true for the arbitrary external fo
Namely, we shall show that all solutions of FFPEs withg
<1 in an arbitrary time-independent potential force field a
thermodynamically sound, and describe the transport o
positively defined density. Moreover, we show that super
fusive equations with 1,g<2 do not always possess phys
cally sound solutions, unless some additional conditions
fulfilled. Fokker-Planck equations of the type of Eq.~1! with
g.2 seem to contradict physical sense. However, the su
ballistic behavior~say, Lévy flights! can be described by th
FFPEs of a different class; see Ref.@15#.

III. THE SUBDIFFUSIVE CASE: TEMPORAL
SUBORDINATION

Let us first consider the subdiffusion case, 0,g,1. Note
that the solution of thesubdiffusive FFPE under time-
independent force can be put in the following form:

P~x,t !5E
0

`

F~x,t!T~t,t !dt, ~15!

where

T~t,t !5
t

gt111/g
L~ t/t1/g,g,2g! ~16!

with L(z,g,2g) being an extreme~one-sided! Lévy-stable
law of indexg @5,17#, whose pdf vanishes identically forz
,0, andF(x,t) is the solution of the ‘‘normal’’ FPE unde
the same force and the same initial conditions:
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]

]t
F~x,t !52m

]

]x
f ~x!F~x,t !1kBT

]2

]x2
F~x,t !. ~17!

To check this, let us take the Laplace transform of both si
of Eq. ~1!, and note that this transform acts only on thet
variable, which appears in Eq.~15! as a parameter: The
Laplace transform int of Eq. ~15! reads

P~x,u!5E
0

`

F~x,t!ug21 exp~2tug!dt5ug21F̃~x,ug!.

~18!

The fractional temporal differentiation leads to

ugF̃~x,ug!2P~x,10!52m
]

]x
f ~x!F̃~x,ug!

1mkBT
]2

]x2
F̃~x,ug!. ~19!

Note that fort→0, theT functions are strongly concentrate
so thatT(t,t)→d(t) and P(x,10)5F(x,10). Changing
now to a new variablel5ug, we recognize in Eq.~19! the
Laplace transform of the ‘‘normal’’ FPE with the same tim
independent force and the same initial conditions. Thus,
solution of the FFPE can be obtained from the solution of
FPE by immediate integration. Moreover, each functional
such a solution~e.g., any moment! can be immediately ob-
tained by weighing the corresponding functional of the F
solution with a probability distribution, Eq.~16!, for which
useful analytic representations are known. Thus, the eq
tions with g<1 in any ~temporally constant! force field f
obey regular Boltzmann thermodynamics and correspon
the transport of a positively defined density. Our result g
eralizes the mathematical treatment of Schneider and W
and shows that the solution of a FFPE describing subdi
sive transport in an external potential is a probability dens
whenever the solution of a normal FPE in the same poten
is one. The generalization to higher dimensions is evide
Note that our discussion here parallels that of Ref.@17#,
where the fractional Kramers equation is considered.

Note that Eq.~19! shows an extremely interesting prop
erty of free relaxation of the systems described by subdi
sive FFPEs, namely the fact that the solution of Eq.~1! hav-
ing a form of convolution~linear response with a long-tim
memory kernel! can be represented in the form of subord
nation, i.e., they correspond to the behavior of the sys
whose development is governed by its own internal clo
which is not synchronized with our physical time@18#. The
first reasonable use of this fact can be probably attribute
Clark; see Ref.@19# for the discussion of the role of subo
dination in economical processes. This~operational! time is a
variable that is Laplace-conjugated toug, and can be consid
ered as a real time variable, since it is monotonously grow
in our physical time and allows us to order the events
quentially.
1-3
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IV. SOME PROPERTIES OF TEMPORAL
SUBORDINATION

The integral transform, Eq.~15!, will be called a subordi-
nation transformation~ST!; the term ‘‘time-expanding trans
formation’’ ~TET! will be reserved for those withg,1. In
order to sharpen the instruments needed for understan
the consequences of Eq.~1!, let us discuss some properties
STs with T(t,t) functions from the class discussed abov
The physical timet will be called the outer variable of th
function T(t,t), and the variablet ~operational time! over
which the integration is performed will be called its inn
variable. Note that the STs are just a type of transforma
typically arising in a context of separation of variables~the
eigenfunction decomposition with integration or summat
over the eigenfunctions numbered by the eigenvaluet). In
the eigenfunction decomposition, we start from the solut
of a time-independent equation~zero order in time! and rise
the order of temporal derivative~say to 1! by applying an
equation of the type of Eq.~15!. In the case of subdiffusive
FFPEs, we proceed in the opposite direction: we lower
order of a temporal derivative by applying subordination.
we proceed to show, a superposition of two functions of
type of T(t,t) ~with indicesg1 andg2) discussed above i
again a function of the same class with the indexg5g1g2.
Let us suppose that both indicesg1 and g2 are less than
unity. We know that the Laplace transform ofT(t,t) in its
outer variable readsT(t,u)5ug21exp(2tug). We thus get

T* ~t,u!5
1

g1
E t8

t111/g1
Lg1S t8

t1/g1
D ug221

3exp~2t8ug2!dt8, ~20!

which is again a Laplace transform of aT function in its
outer variable. Using this fact, once again we get

T* ~t,u!5ug221E
0

`

T1~t,j!exp~2jug2!dj

5ug2 g121 exp~2tug1g2!. ~21!

Thus, parallel to the Le´vy case of Ref.@14#, the superposition
of two TETs is a TET again. Note that allT functions with
g,1 are probability densities in their inner variable: they a
non-negative and integrable. On the other hand, theT func-
tions rising the order of the temporal variable have a Lapl
transform in the outer variable, which reads

Tg
2~t,u!5T1/g~t,u!5u1/g21 exp~2tu1/g!, ~22!

i.e., it belongs to the same class of functions asT’s, but with
g* 51/g.1. Note that the transformsTg and Tg

25T1/g ,
lowering and rising the order of the FFPE to the sa
amount, are the inverse of each other: the Laplace transf
of TgTg

2 is exp(2ut) so thatTgTg
2 corresponds to ad(t

2t). Moreover, we have to note that thet integral ofT(t,t),
N(t)5*0

`T(t,t)dt being an inverse Laplace transform
N(u)5*0

`ug21 exp(2tug)dt5u21, is equal to 1 both for
TETs (g,1) and inverse (g.1) transforms, so that both
05611
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the subordination and the inverse transformation keep
overall normalization of the possible probability dens
functions~PDFs! as functions of coordinates.

The T2 functions are not PDFs oft since they may take
negative or even complex values. Let us fix some value ot
and consider the limiting value of the integralI (t)
5*0

`T(t,t)dt, which can be expressed in terms

T(t,u): I (t)5 limu→0(ug21e2tug
). For g,1 the corre-

sponding integral diverges being positive. On the other ha
for g.1I (t)50, which means that the functionT(t,t)
either changes its sign or vanishes identically. The las
not the case since the integralI 1(t)5*0

`tT(t,t)dt52d/

du(ug21e2tug
)uu→0 still diverges for 1,g,2 @for larger

values of g the integralsI n(t)5*0
`tnT(t,t)dt with n.g

21 still diverge#.

V. THE SUPERDIFFUSIVE CASE

Our derivation of the FFPE and its formal solutio
through subordination are valid independent of the particu
value of g. The fact thatTg(t,t) for g.1 is not non-
negative does not mean that the integral Eq.~15! takes nega-
tive values: it solely means that the non-negativity of t
physical solutions of FFPEs does not follow from the no
negativity of the physical solutions of the Fokker-Plan
equation, and that the variablet can no longer be interprete
as an internal time governing the system’s evolution. On
other hand, Eqs.~18! and~19! are still valid as a representa
tion of a formal solution of the FFPE. We shall regard su
a formal solution as following from a pseudosubordinatio
In some special cases of pseudosubordination one can
guarantee that the corresponding solution is a probability
tribution, as is the case, e.g., for force-free transport fog
<2; in other cases, the solutions are not PDFs as, e.g.
g.2.

A. Pure superdiffusion: Relation to a wave equation

Let us consider a purely diffusive situation without exte
nal force,

F~x,t !5
1

2ApDt
expS 2

x2

4Dt D . ~23!

The Laplace transform of this function int variable reads

F~x,u!5 1
2 u21/2exp~2uxuAu!. ~24!

Let us now use Eq.~18! and getP(x,u) for arbitraryg:

P~x,u!5ug21F̃~x,ug!5 1
2 ug/221 exp~2uxuug/2!. ~25!

The functionP(x,u) belongs to the class of functionsT(t,t)
given by Eq.~16!, but with a change ofg to g/2:

P~x,t !5 1
2 Tg/2~ uxu,t !. ~26!

Note that Eq.~26! gives the representation of the superdiff
sive propagators in terms of the Le´vy functions, which sim-
plifies the general result of Ref.@6#. Since we know that
1-4
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Tg(j,t) is a positive function of both of its variables fort
.0 and g<1, in the case of free propagation,P(x,t) is
positive for allg,2. The caseg52 corresponding to

P~x,t !5 1
2 d~ uxu2t ! ~27!

describes a special case of ballistic propagation. The e
tions of indexg.2 ~describing a process that isfaster than
the ballistic one! do not correspond to transport of positiv
probabilities, since the functionsTg with g.2 are no longer
non-negative.

We have seen that although the non-negativity of the
lution is not mathematically guaranteed by the FFPE w
g.1 itself, the equation still can possess physically reas
able positive solutions describing superdiffusive transp
Let us discuss now the reasons why this is so. Let us n
that the solutionP(x,u)5u21/2exp(2uxuAu) itself can be
considered as subordinated to a process described by
~27! @corresponding toC(x,u)5Ap exp(2uxuu)# with a
‘‘subdiffusive’’ subordination functionT1/2(t,t), so that the
whole process can be considered as a superposition of
subordination transformations, leading to the overall beh
ior with g* 5g/2. The process subordinated to ad-functional
form under operational time given byTg/2(t,t) is, of course,
exactly the solution given by Eq.~26! discussed before.

We note here that the twod pulses described by Eq.~27!
are a solution of a wave equation,

]2C

]t2
5

]2C

]x2
. ~28!

The solution Eq.~27! is not a Green’s-function solution of
wave equation@known to beG(x,t)5 1

2 u(t2uxu) in one di-
mension, see Ref.@20## but rather a solution correspondin
to a different initial condition, namelyG(x,t)→d(x)d8(t).
The reason for this is easy to understand: The limiting eq
tion for the Green’s function of a FFPE withg→2 is not a
wave equation, but rather a first-order integro-differen
form,

]F

]t
5E

0

t]2F

]x2
dt81d~x!d~ t !, ~29!

which is obtained from a wave equation by temporal integ
tion.

B. A problem of superdiffusion with drift

Let us now consider processes being pseudosubordin
to diffusive motion under time-independent homogene
external force„i.e., the solutions of FFPEs

]P

]t
50Di

aFm f
]

]x
P~x,t !1D

]2

]x2
P~x,t !G ~30!

with a512g,0…. The Laplace transform of the corre
sponding Green’s function of the FPE,
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F~x,t !5
1

2ApDt
expF2

~x2m f t !2

4Dt G , ~31!

reads

F~x,u!5
exp~m f x/2D !

2ApD
E

0

` 1

At

3expF2S m2f 2

4D
1uD t2

x2

4D
t21Gdt

5
exp~2zl!

2AD

1

Az21u
exp@2A~z21u!l2#, ~32!

where the variablesl5x/2AD andz5m f /2AD (z.0) are
introduced~see 2.3.16.2 of Ref.@21#!. Applying theT2 trans-
formation to Eq.~32!, we get

P2~x,u!5
exp~2zl!

2AD

u

Az21u2
exp@2A~z21u2!l2#.

~33!

Let us show thatP2(x,u) is not a Laplace transform of a
probability distribution. Note that a Laplace transformf (u)
of any non-negative functionf (t) must be an absolutely
monotone function, i.e., (21)n(dn/dun) f (u)>0 must hold
for all u andn. To prove this, it is easy to see that

dn

dun
f ~u!5E

0

`

f ~ t !e2utdt5~21!nE
0

`

tnf ~ t !e2utdt.

~34!

On the other hand, the firstu derivative ofP2(x,u) changes
its sign atu being a root of the equation

z2A~u21z2!l22u2~u21z2!50. ~35!

The existence of positive roots of this equation for anyz
Þ0 is clear since for smallu the overall expression@whose
sign is the same as the sign of (d/du)P2(x,u)# is positive,
and for largeu it is negative. Note that the function becom
absolutely monotone only whenz50, i.e., only in the case
of free diffusion. This observation is of extreme importan
since it shows that while the TETs (Tg with g,1), lowering
the order of the FFPE, always lead to reasonable phys
solutions, the inverse transformations, raising the order
the FFPE, do not always do so.

Note that all the functionsPg(x,t) obtained from diffu-
sion with drift under pseudosubordination are not probabi
distributions for allg.1. The Laplace transform of the cor
responding functions reads

Pg~x,u!5
exp~2zl!

2AD

ug21

Az21ug
exp@2A~z21ug!l2#.

~36!

The first derivative ofPg(x,u) changes its sign atu being a
positive root of
1-5
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@~g22!ug1~2g22!z2#A~ug1z2!l22gug~ug1z2!50,
~37!

which function is positive for smallu and negative for large
ones. Thus, the solutions of the FFPE of the type o
Fokker-Planck equation withg.1 under homogeneous, con
stant force are not probability distributions. Similar conc
sions were drawn when considering the particle’s motion i
harmonic potential@22#.

VI. SUPERDIFFUSIVE CASE: SUBORDINATION
TO A GENERIC TRANSPORT EQUATION

In Sec. V A, we have seen that the solutions of a diffus
equation~representing a behavior of a stochastic process! are
subordinated to deterministic dynamics, described by
simple propagation of pulses with constant velocity a
given by a wave equation. Is the wave equation~i.e., the
superdiffusive FFPE withg52 for a force-free situationf
50) a very special case, or are there some forms witf
Þ0 that still lead to reasonable solutions?

It is clear that the second-order partial differential equ
tion to whose solutions the solution of FFPEs could be s
ordinated would read

]2P

]t2
52

]

]x
@A~x!P#1

]2

]x2
@B~x!P#. ~38!

Equation~38! includes the wave equation as a special ca
Equation~38! will be called the generic transport equatio
~GTE!, and, parallel to a wave equation, has a dynam
~deterministic! nature. This equation~being a close relative
of Liouville equation! was considered by the author in
different context in Ref.@23#: The GTE appears when resto
ing temporal dependence in a Pope-Ching equation for
tionary random processes, Ref.@24#. The meaning of prefac
tors here isA(x)5^ẍ(x)& and B(x)5^ẋ2(x)&, so that for a
physical particle they are proportional to the acting force a
to the particle’s mean kinetic energy.

Let us remember the procedure of derivation of the G
given in Ref.@23#. The PDF ofx, px(x), is obtained as an
ensemble average~e.g., over the initial conditions! of the
realizations for each of which

p~x,t !5d„X~ t !2x…, ~39!

whereX(t) represents the law of motion. The coarse-grain
probability is then given byp(x)5^p(x,t)&. Differentiating
Eq. ~39! with respect to time, one gets

]p

dt
52Ẋ

]p

]x
52

]

]x
~Ẋp! ~40!

sinceX is independent ofx. Note that Eq.~40! is a Liouville
equation, and the derivation here is parallel to the one gi
in Ref. @25#. Applying the same procedure for the seco
time, we get
05611
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]2p

]t2
52

]

]x

]

]t
~Ẋp!5

]

]x
~Ẍp!1

]

]x F Ẋ
]

]x
~Ẋp!G

52
]

]x
~Ẍp!1

]2

]x2
~Ẋ2p!, ~41!

which is, of course, identical to the Liouville one. The GT
follows after the ensemble averaging, under which the c
responding conditional means appear instead of the insta
neous velocity and acceleration, so that Eq.~41! reduces to
Eq. ~38!. Note that the GTE can be useless but is never fa
its solutions describe all possible motions and are both
namically and thermodynamically sound. These solutions
probability densities. On the other hand, the prefactorsA and
B arise as~nonequilibrium! ensemble averages and depe
on what ensemble is used and thus on the initial conditio
a simple example of this fact is considered below. The
sence of the physical solution of Eq.~38! means that the
corresponding thermodynamical forces and kinetic coe
cients definingA(x) and B(x) are incompatible with each
other or with the initial conditions and would never appear
thermodynamical means. Moreover, even if the system a
whole is homogeneous and its physical properties are ti
independent, the coefficientsA(x,t) andB(x,t) can be time-
dependent and will relax to the equilibrium values no fas
than the distribution itself relaxes to its equilibrium form
which explains the unphysical sort-time behavior of the
lutions of superdiffusive FFPE in the harmonic potent
found in Ref.@22#.

As an example of a process subordinated to a solution
the GTE, let us consider a simple oscillatory process tak
place in the operational time of the system. The dynam
equation of the oscillator is

ẍ52vx. ~42!

Let us consider the situation in which the oscillator sta
with zero velocity at x52a so that A(x)52v2x and
B(x)5v2(a22x2). Our process is described in operation
time by a GTE,

]2F

]t2
5

]

]x
~v2xF!1

]2

]x2
@v2~a22x2!F# ~43!

with the initial conditions F(x,0)5d(x1a) and
@]F(x,t)/]t#ut5050, whose solution, as anticipated, rea
F(x,t)5d(x1a cosvt). Note that the coefficientB depends
explicitly on a, so that the form of the equation depends
the initial energy of the oscillator. Equation~43! is incom-
patible with any combination of initial conditions not leadin
to the same amplitude of oscillations, i.e., whenever o
1-6
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supposesv2x2(0)1 ẋ2(0)5” a2, and would lead in this cas
to negative or complex PDFs. The solution subordinated
F(x,t) reads

P~x,u!5E
0

`

d~x1a cosvt!ug21 exp~2tug!dt

5
ug21

vaA12x2/a2
expF 1

v
arccosS 2

x

aDugG
3 (

n50

`

expS 2
p

v
nugD

5
ug21

vaA12x2/a2

expF 1

v
arccosS 2

x

aDugG
12expS 2

p

v
ugD . ~44!

For t→` ~full dephasing!, the corresponding PDF tends to
PDF to find an oscillating point at coordinatex. Thus, for
u→0,

P~x,u→0!.
1

u

1

paA12x2/a2
, ~45!

which corresponds to

P~x,t→`!.
1

paA12x2/a2
, ~46!

a well-known solution for the invariant PDF for a classic
harmonic oscillator. Thus, the equations subordinated
GTE may describe partly coherent phenomena: their phys
relation to a wave equation becomes evident. It is interes
to mention that the Fokker-Planck equation with the sa
coefficients as Eq.~43! describes a harmonic oscillator i
which the diffusion takes place in an inhomogeneous te
perature field,T(x).A12x2/a2, and such a diffusive solu
tion stays physically sound both under subordination and
der pseudosubordination up tog52.

The discussion above shows that for allA(x) and B(x)
and initial conditions for which Eq.~38! has real, non-
negative, normalizable solutions, the free relaxation o
complex system under FFPE dynamics can be describe
its deterministic development in its own~operational! time.
The inverse~as we have proved with an example of a diff
sion with drift! is not the case. Our considerations leave op
the question of whether all physically sound solutions
superdiffusive FFPEs are subordinated to those of GTE, o
this class is wider and includes some functions that are p
ability densities for 1,g,g* and cease to be probabilit
densities forg* ,g,2.
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It is important to stress that the fact that the solutions
superdiffusive FFPEs in general are not probability densi
does not devaluate the FFPEs as an instrument for des
tion of complex relaxation phenomena, but shows that m
combinations of thermodynamical forces, kinetic coef
cients, and memory functions will never appear as therm
dynamic ensemble means. This means that the forces
kinetic coefficients cannot be invented ad hoc, but must
low either from experiments or from microscopic conside
ations. In the case when the correct thermodynamical for
and the impedance of the system are known, its FFPE
uniquely determined.

The consideration of the GTE explains also our findi
that the solutions for the force-free transport withg.2 are
not non-negative. Such equations would describe proce
subordinated to the solutions of the exact third-order tra
port equation. The exact equation withg53 arising from

applying a Liouville operator]/]t1 ẋ(]/]t) to the PDFP
three times is a trinomial construct, with correlated coe
cients in front of the first, the second, and the third spa
derivatives. This third-order equation is a generic form
transport equations of higher order. The equations subo
nated to this one will have third-order structure in spat
variables and will hardly be a helpful tool, since they do n
have any known classical counterpart whose solutions m
be used for building new ones.

VII. CONCLUSIONS

Fractional Fokker-Planck equations~FFPE! with addi-
tional fractional time derivative in front of a normal Fokke
Planck operator appear within a usual linear-response th
when describing systems showing strange kinetics. We s
that such a form of FFPEs describes systems in contact
a heat bath, since the noise in such systems in equilibr
~for t→`) fulfills the Nyquist theorem. Many other form
~e.g., with temporal fractional derivatives of different orde
in front of first- and second-order spatial derivatives! are thus
ruled out as appropriate for describing situations close
equilibrium, although they may be appropriate for ma
other transport processes, such as, e.g., dispersion by fl
Using the fact that the solutions of subdiffusive FFPEs w
time-independent coefficients are subordinated to those
normal Fokker-Planck equations, we show that the FFPE
lutions are probability densities in all cases when the us
Fokker-Planck equation has physical solutions. Thus,
free relaxation of a complex system under FFPE dynam
can be described as its development in its own~operational!
time. The superdiffusive FFPEs do not possess physical
lutions for an arbitrary choice of force and diffusion coef
cient. This does not devaluate the FFPEs as a tool for
scription of superdiffusive processes, but stresses the
that the corresponding combination of thermodynami
forces and memory functions can never emerge as a the
dynamical ensemble average: the corresponding phenom
logical equations have to be handled with care.
1-7
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